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We investigate the dynamical mechanism for the partial synchronization in three coupled one-dimensional
maps. A completely synchronized attractor on the diagonal becomes transversely unstable via a blowout
bifurcation, and then a two-cluster state, exhibiting on-off intermittency, appears on an invariant plane. If the
newly created two-cluster state is transversely stable, then partial synchronization occurs on the invariant
plane; otherwise, complete desynchronization takes place. It is found that the transverse stability of the inter-
mittent two-cluster state may be determined through the competition between its laminar and bursting com-
ponents. When the laminarsburstingd component is dominant, partial synchronizationscomplete desynchroni-
zationd occurs through the blowout bifurcation. This mechanism for the occurrence of partial synchronization
is also confirmed in three coupled multidimensional invertible systems, such as coupled Hénon maps and
coupled pendula.
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I. INTRODUCTION

Recently, synchronization of coupled chaotic systems has
attracted much attention because of its potential practical ap-
plicationsse.g., see Ref.f1gd. For a sufficiently strong cou-
pling, complete synchronization of chaotic systems occurs
si.e., all subsystems become synchronizedd f2–5g. However,
as the coupling parameter decreases and passes a threshold
value, the fully synchronized attractor on the invariant syn-
chronization subspace becomes transversely unstable via a
blowout bifurcation f6–10g. Then, partial synchronization,
where some of the subsystems synchronize while others do
not, or complete desynchronization may occur for three or
more coupled systemsf11–16g. In particular, partial synchro-
nization sor clusteringd has been extensively investigated in
globally coupled systems where each subsystem is coupled
to all the other subsystems with equal strengthf17–19g.

Here, we are interested in whether the asynchronous at-
tractor created via a supercritical blowout bifurcation of the
fully synchronized attractor is partially synchronized or com-
pletely desynchronized. Examples of both partially synchro-
nized attractorsf11,13–15g and completely desynchronized
attractorsf12,16g were reported. These previous results show
that occurrence of partial synchronization depends on the
type of base map constituting the coupled system and the
type of coupling between the base maps. However, the un-
derlying mechanism for the occurrence of partial synchroni-
zation remains unclear.

This paper is organized as follows. As a simple model
where partial synchronization may occur, we consider three
coupled one-dimensionals1Dd maps with a parameterps0
øpø1/3d tuning the degree of asymmetry in the coupling
from unidirectional couplingsp=0d to symmetric coupling
sp=1/3d. This model can be used to represent the three-
cluster dynamics in an ensemble ofN globally coupled 1D
maps and the parameterp describes the distribution of the
elements between the three clusters. For both extreme cases
of the unidirectional and symmetric couplings, partial syn-
chronizationf11g and complete desynchronizationf16g oc-

cur, respectively. In Sec. II A, we investigate the dynamical
mechanism for the occurrence of partial synchronization by
increasing the parameterp from 0 to 1/3. An asynchronous
two-cluster state appears on an invariant plane via a super-
critical blowout bifurcation of the fully synchronized attrac-
tor on the diagonal. A typical trajectory in the newly created
two-cluster state exhibits on-off intermittencyf20–28g,
where long episodes of laminarsi.e., nearly synchronousd
evolution near the diagonal are occasionally interrupted by
short-term bursts. When the asymmetry parameterp is less
than a threshold valuep* si.e., 0øp,p*d, the two-cluster
state on the invariant plane is transversely stable, and hence
partial synchronization occurs. However, forp.p* a com-
pletely desynchronized attractor, occupying a three-
dimensionals3Dd finite volume, appears, because the two-
cluster state is transversely unstable. It is found that such a
transverse stability of the intermittent two-cluster state may
be determined via competition between its laminar and burst-
ing components. When the “transverse strength” of the lami-
nar component is largerssmallerd than that of the bursting
component, the two-cluster state becomes transversely stable
sunstabled, and hence a partially synchronizedscompletely
desynchronizedd attractor appears through the supercritical
blowout bifurcation. These results are also confirmed in Sec.
II B for the case of three coupled multidimensional invertible
period-doubling systems such as coupled Hénon maps and
coupled pendula. Hence, the mechanism for the occurrence
of partial synchronization seems to be of wide significance
because it holds in typical three-coupled period-doubling
systems. However, note that the transverse stability of a two-
cluster state for the three-coupled case does not imply trans-
verse stability in theN globally coupled case. As was shown
in f18g, chaotic two-cluster states created via blowout bifur-
cations are transversely unstable in an ensemble ofN glo-
bally coupled 1D maps.sA detailed explanation of distinc-
tion between the two types of transverse stability for the
three-coupled andN globally coupled cases is also given in
the last part of Sec. II A.d Finally, we give a summary in Sec.
III.
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II. DYNAMICAL MECHANISM FOR THE OCCURRENCE
OF PARTIAL SYNCHRONIZATION

A. Partial synchronization in three coupled 1D maps

We investigate the dynamical mechanism for the occur-
rence of partial synchronization in three coupled 1D maps
with a parameter tuning the asymmetry in the coupling.

xt+1
sid = fsxt

sidd + «So
j=1

3

pj fsxt
s jdd − fsxt

siddD, i = 1,2,3, s1d

wherext
sid is a state variable of theith element at a discrete

time t, the uncoupled dynamicss«=0d is governed by the 1D
map fsxd=1−ax2 with a control parametera, « is a coupling
parameter, andpj denotes the coupling weight for thej th
elementsS j=1

3 pj =1d. Here, the asymmetric coupling naturally
appears when studying the three-cluster dynamics in an en-
semble ofN globally coupled 1D mapsf17–19g, where each
1D map is coupled to all the other ones with equal strength,

xt+1
sid = fsxt

sidd + «S 1

N
o
j=1

N

fsxt
s jdd − fsxt

siddD . s2d

For the case of three clusters withNj elements in eachj th
clustersj =1,2,3d, Eq.s2d is reduced to the three-coupled sys-
tem of Eq.s1d, wherepjs=Nj /Nd represents the fraction of
the total population of elements in thej th cluster. Two ex-
treme cases of the unidirectional and symmetric couplings
were previously considered. The unidirectionally coupled
map with p2=p3=0 si.e., p1=1d, where the first drive sub-
system with the state variablexs1d acts on the second and
third response subsystems with the state variablesxs2d and
xs3d, was studied inf11g, and partial synchronization was
observed to occur on an invariant plane via a supercritical
blowout bifurcation of the fully synchronized attractor on the
diagonal. On the other hand, a completely desynchronized
3D attractor appears through the supercritical blowout bifur-
cation for the case of symmetric coupling withp1=p2=p3
=1/3 f16g. To connect these two extreme cases, we consider
a path withp2=p3;ps0øpø1/3d in the p2−p3 plane, and
then the parameterp tunes the degree of asymmetry in the
coupling of Eq.s1d from the unidirectional couplingsp=0d
to the symmetric couplingsp=1/3d.

From now on, we investigate the dynamical origin for the
occurrence of partial synchronization by varying the asym-
metry parameterp in the three coupled 1D maps of Eq.s1d
for a=1.95. We first consider complete synchronization oc-
curring in the case of strong coupling. Such complete syn-
chronization is independent ofp. Figures 1sad and 1sbd show
a fully synchronized attractor on the invariant diagonal for
«=0.5. The longitudinal stability of a synchronized trajectory
hxt

*s=xt
s1d=xt

s2d=xt
s3ddj on the attractor against the perturbation

along the diagonal is determined by its longitudinal
Lyapunov exponent

si = lim
M→`

1

M o
t=0

M−1

lnuf8sxt
*du, s3d

where the prime represents the differentiation off with re-
spect tox. This longitudinal Lyapunov exponent is just the
Lyapunov exponent of the 1D mapf. For a=1.95, we have
si=0.5795, and hence the attractor is a chaotic one. On the
other hand, the transverse stability of the fully synchronized
attractor against perturbation across the diagonalsi.e., asyn-
chronous perturbationd is determined by its transverse
Lyapunov exponent with a twofold multiplicity,

s' = si + lnu1 − «u. s4d

A plot of s' versus« is shown in Fig. 1scd. If « is relatively
large such thatsi ,−lnu1−«u, then the transverse Lyapunov
exponents' is negative, and hence the fully synchronized
attractor becomes transversely stable. However, as« de-
creases and passes a threshold value«* s=0.4398d, the fully
synchronized attractor becomes transversely unstable, be-
cause the transverse Lyapunov exponents' becomes posi-
tive. Then, an asynchronous attractor, containing the diago-
nal, is created via a supercritical blowout bifurcation, but its
type depends on the value ofp.

In the unidirectionally coupled case withp=0, a partially
synchronized attractor appears via a supercritical blowout bi-
furcation on the invariantP23f=hsxs1d ,xs2d ,xs3dd uxs2d=xs3djg
plane, as shown in Figs. 2sad and 2sbd for «=0.42. The par-
tially synchronized attractor is a chaotic one with two longi-
tudinal Lyapunov exponentssi,1 s=0.5795d and si,2

s=−0.014dg, and it is transversely stable against the perturba-
tion across theP23 plane, because its transverse Lyapunov
exponents' s=−0.014d is negative. On the other hand, for
the symmetrically coupled case withp=1/3, a completely

FIG. 1. Projections of a fully synchronized attractor onto thesad
xs1d-xs2d and sbd xs2d-xs3d planes fora=1.95 and«=0.5. scd Plot of
s' stransverse Lyapunov exponent of the fully synchronized attrac-
tord versus« for a=1.95. The data ofs' are represented by a solid
line.
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desynchronized attractor, occupying a finite 3D volume, ap-
pears through a supercritical blowout bifurcation, as shown
in Figs. 2scd and 2sdd for «=0.42, and it is a hyperchaotic
attractor with three positive Lyapunov exponentsss1
=0.539,s2=0.021, ands3=0.01d. Such complete desyn-
chronization occurs because the two-cluster state on theP23
plane, created via the supercritical blowout bifurcation, be-
comes transversely unstable, as will be shown below.

When the fully synchronized attractor on the diagonal be-
comes transversely unstable, a two-cluster state appears on
the invariantP23 plane through a supercritical blowout bifur-
cation. This two-cluster state satisfiesxt

s1d;Xt and xt
s2d=xt

s3d

;Yt, and its dynamics is governed by a reduced 2D map,

Xt+1 = fsXtd + 2p«ffsYtd − fsXtdg, s5ad

Yt+1 = fsYtd + s1 − 2pd«ffsXtd − fsYtdg. s5bd

For the accuracy of numerical calculationsf29g, we intro-
duce new coordinatesU andV,

U =
X + Y

2
, V =

X − Y

2
. s6d

Then the invariant diagonal is transformed into a new invari-
ant lineV=0. In these new coordinates, the 2D reduced map
of Eq. s5d becomes

Ut = 1 −asUt
2 + Vt

2d − 2a«s1 − 4pdUtVt, s7ad

Vt = 2as« − 1dUtVt. s7bd

Figures 3sad and 3sbd show the two-cluster states, created via
supercritical blowout bifurcations, in theU-V plane for the
unidirectionallysp=0d and symmetricallysp=1/3d coupled
cases, respectively. These two-cluster states are chaotic at-

tractors in the reduced 2D mapsi.e., they are chaotic attrac-
tors in the restrictedP23 planed. However, their transverse
stability against perturbation across the invariantP23 plane
depends on the value ofp. Only when the two-cluster state is
transversely stable, it becomes an attractor in the whole 3D
space. To determine the transverse stability of a two-cluster
state, we numerically follow a typical trajectory in the two-
cluster state until its lengthL becomes 108, and then the
transverse Lyapunov exponent for the trajectory segment
with lengthL is given by

s' =
1

L
o
t=0

L−1

lnus1 − «df8sUt − Vtdu. s8d

A plot of s' versusD« s=«−«*d is given in Fig. 3scd fp=0
sup trianglesd, 0.146 scrossesd, and 1/3 sdown trianglesdg,
where «*s=0.4398d is the blowout bifurcation point of the
fully synchronized attractor. For the case of unidirectional
coupling sp=0d, the two-cluster state is transversely stable,
because its transverse Lyapunov exponents' is negative,
and hence partial synchronization occurs on theP23 plane
via a supercritical blowout bifurcationsi.e., a partially syn-
chronized attractor appears on theP23 planed. On the other
hand, asp is increased from 0, the value ofs' increases;
eventually it becomes zero for a threshold valuep*

s.0.146d, and then it becomes positive. Hence, forp* ,p
ø1/3, complete desynchronization takes place through a su-
percritical blowout bifurcationsi.e., a completely desynchro-
nized 3D attractor appearsd, because the two-cluster on the
P23 plane becomes transversely unstable. Examples in Figs.
3sad and 3sbd for D«=−0.003 show the transversely stable

FIG. 2. Projections of the partially synchronized attractor onto
thesad xs1d-xs2d andsbd xs2d-xs3d planes fora=1.95 and«=0.42 in the
unidirectionally coupled case withp=0. Projections of the com-
pletely desynchronized attractor onto thescd xs1d-xs2d and sdd xs2d

-xs3d planes fora=1.95 and«=0.42 in the symmetrically coupled
case withp=1/3.

FIG. 3. sad Transversely stabless'=−0.0027d two-cluster state
for p=0 andsbd transversely unstabless'=0.002d two-cluster for
p=1/3 in theU-V plane whena=1.95 andD«f=«−«*s=0.4398dg
=−0.003.scd Plot of s' stransverse Lyapunov exponent of the two-
cluster stated versus D« for a=1.95 fp=0 sup trianglesd, 0.146
scrossesd, 1.3 sdown trianglesdg. Straight lines between the data
symbols are plotted only to guide the eye.
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ss'=−0.0027d and unstabless'=0.002d two-cluster states
for p=0 and 1/3, respectively.

We now investigate the mechanism for the transition from
partial synchronization to complete desynchronization by
varying the asymmetry parameterp. A typical trajectory in
the two-cluster state, born via a supercritical blowout bifur-
cation, exhibits on-off intermittency near the main diagonal.
We use a small quantityd* for the threshold value of the
magnitude of the transverse variableds=uVud such that ford
,d* the trajectory is considered to be in the laminarsoffd
state, where it exhibits a nearly synchronous motion, while
for d.d* it is considered in the burstingsond state. Thus, a
typical trajectory may be decomposed into laminar and
bursting components. Then, dynamical properties of the two-
cluster state may be understood through competition of the
laminar and bursting componentsf10g. Here, we are con-
cerned about the transverse stability of an intermittent two-
cluster state. Its transverse Lyapunov exponents' fsee Eq.
s8d for the transverse Lyapunov exponent of a trajectory seg-
mentg can be given by the sum of the two weighted trans-
verse Lyapunov exponents of the laminar and bursting com-
ponents,S'

l andS'
b :

s' = S'
l + S'

b s9ad

=S'
b − uS'

l u, s9bd

where the laminar component always has a negative
weighted transverse Lyapunov exponentsS'

l ,0d. For each
componentsi = l ,bd, the weighted transverse Lyapunov expo-
nent S'

i is given by the product of the fractionmi of time
spent in thei state and its transverse Lyapunov exponents'

i ,
i.e.,

S'
i = mis'

i , mi =
Li

L
,

s'
i =

1

Li
o

tPi state

8lnus1 − «df8sUt − Vtdu si = l,bd, s10d

whereLi is the time spent in thei state for a trajectory seg-
ment of lengthL and the primed summation is performed in
eachi state. Then, the sign ofs' may be determined through
competition between the laminar and bursting components
fsee Eq.s9bdg. When the “transverse strength” of the laminar
componentfi.e., the magnitude of the weighted transverse
Lyapunov exponentsuS'

l udg is largerssmallerd than that of the
bursting componentsi.e., S'

b d, partial synchronizationscom-
plete desynchronizationd occurs, because the two-cluster be-
comes transversely stablesunstabled.

Figures 4sad–4sfd show the fractionmlsbd of the laminar
sburstingd time fi.e., the time spent in the laminarsburstingd
stateg, the transverse Lyapunov exponents

'

lsbd of the laminar
sburstingd component, and the weighted transverse Lyapunov
exponentS

'

lsbd of the laminarsburstingd component when the
threshold value for the laminar state isd* =10−4 f30g. For the
case of the laminar component, bothml and s'

l are nearly
independent of p, and hence its weighted transverse
Lyapunov exponentS'

l s=mls'
l d becomes nearly the same,

irrespective ofp fsee Figs. 4sad–4scdg. On the other hand, the
transverse Lyapunov exponents'

b of the bursting component
increases asp is increased from zerofsee Fig. 4sed; p=0 sup
trianglesd, 0.146 scrossesd, and 1/3 sdown trianglesdg, al-
though its fractionmbf=1−mlg of the bursting time is nearly
independent ofp, as shown in Fig. 4sdd. Hence, the trans-
verse strength of the bursting componentfi.e., S'

b s=mbs'
b dg

becomes larger asp is increased from zerofsee Fig. 4sfdg.
For p=0 sup trianglesd, the laminar component is dominant,
becauseuS'

l u.S'
b . Hence, the two-cluster becomes trans-

versely stable, and it becomes an attractor in the whole 3D
phase spacesi.e., partial synchronization occursd. However,
as p is increased from zero,S'

b increases, whileuS'
l u is

nearly independent ofp. Eventually, for a threshold valuep*

f.0.146 scrossesdg, the transverse strength of the bursting
and laminar components becomes balancedsi.e., S'

b = uS'
l ud,

and then the bursting component becomes dominant forp*

,pø1/3 fe.g., see the case ofp=1/3 sdown trianglesdg,
becauseS'

b . uS'
l u. Thus, when passing the threshold value

p* , a transition from partial synchronization to complete de-
synchronization occurs. Consequently, for 0øp,p* , there
exists a partially synchronized attractor withs',0 on the
invariant P23 plane fe.g., see Figs. 2sad and 2sbd for p=0g,
while for p* ,pø1/3, a completely desynchronized 3D at-
tractor appearsfe.g., see Figs. 2scd and 2sdd for p=1/3g be-
cause the two-cluster on theP23 plane is transversely un-
stable.

FIG. 4. Plots ofsad fsddg the fractionmlsbd of the laminarsburst-
ingd time, sbd fsedg the transverse Lyapunov exponents

'

lsbd of the
laminarsburstingd component, andscd fsfdg the weighted transverse
Lyapunov exponentsS

'

lsbd of the laminarsburstingd component ver-
sus D«f=«−«*s=0.4398dg for a=1.95 with p=0 sup trianglesd,
0.146scrossesd, and 1/3sdown crossesd. Straight lines between the
data symbols are plotted only to guide the eye.
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The above transition from a partially synchronized to a
completely desynchronized attractor could be understood as
follows. The newly created intermittent two-cluster on the
invariantP23 plane includes an infinite number of asynchro-
nous unstable periodic orbits that are off the invariant diag-
onal. Some of these unstable periodic orbits are transversely
stable, while some others are transversely unstable. It is con-
jectured that asp is increased from zero, the strength of the
group of asynchronous unstable periodic orbits with positive
transverse Lyapunov exponents might increase, which may
result in the observed increase ins'

b .
To sum up the main results of this section, we consider an

intermittent two-cluster state created via a blowout bifurca-
tion in the three-coupled 1D maps of Eq.s1d and show that
the sign of its transverse Lyapunov exponents' of Eq. s8d
can be determined through competition between the laminar
and bursting components. However, we note that the trans-
verse stability of a two-cluster state in the three-coupled 1D
maps does not imply its transverse stability in an ensemble
of N globally coupled 1D maps of Eq.s2d. In fact, it was
shown in f18g that two-cluster states created via blowout
bifurcations in theN globally coupled 1D maps are trans-
versely unstable for all the cases of distributions of elements
between the two clusters. To make the point clear, we con-
sider a two-cluster statesxt

s1d=¯ =xt
sN1d;Xt ,xt

sN1+1d=¯

=xt
sNd;Ytd with Ni elements in theith clustersi =1, 2d. Then,

there exist two transverse Lyapunov exponents determining
the transverse stability of the two-cluster state

s',1 = lim
L→`

1

L o
t=0

L−1

lnus1 − «df8sXtdu,

s',2 = lim
L→`

1

L o
t=0

L−1

lnus1 − «df8sYtdu. s11d

Here,s',1 ands',2 with N1−1 andN2−1 multiplicities de-
termine the stability against perturbations destroying the syn-
chronization of the first and second clusters, respectively. As
shown in Fig. 6 of Ref.f18g, the first largest transverse
Lyapunov exponents',1 is positive for all values of the dis-
tribution parameterq s=N2/Nd, and hence all two-cluster
statesscreated via blowout bifurcationsd become transversely
unstable. Following the similar procedure developed in the
above three-coupled casefsee Eq.s9bdg, the transverse insta-
bility of all two-cluster states is also determined through
competition between their laminar and bursting components.
Since its bursting component is dominant for allq, any two-
cluster statescreated through a blowout bifurcationd becomes
transversely unstable for theN globally coupled case. This is
in contrast to our three-coupled case, where only one trans-
verse Lyapunov exponents' of Eq. s8d determines the trans-
verse stability of the two-cluster statesxt

s1d=Xt ,xt
s2d=xt

s3d

=Ytd on theP23 plane. We note that the transverse Lyapunov
exponent s', determining stability against perturbation
breaking the synchrony of the second clustersxt

s2d=xt
s3dd, cor-

responds to the second transverse Lyapunov exponents',2
in Eq. s11d for theN globally coupled case.fHowever, for the
three-coupled case, there is no transverse Lyapunov expo-

nent corresponding tos',1 in Eq. s11d, because there exists
only one elementxt

s1d in the first cluster.g Thus, in our three-
coupled case partial synchronizationscomplete desynchroni-
zationd is found to occur via a blowout bifurcation when the
laminar sburstingd component is dominant. Finally, we em-
phasize that our method to determine the transverse stability
of an intermittent two-cluster state through its decomposition
into the laminar and bursting components may be applied to
a large class of coupled systemssincluding the three-coupled
and globally coupled cases we considerd.

B. Partial synchronization in three-coupled multidimensional
invertible systems

The results obtained in the preceding section are of wide
significance, because the 1D map is a representative model
for a large class of period-doubling systems. As examples,
we study coupled multidimensional invertible systems, ex-
hibiting period doublings, and find similar results.

First, we consider three coupled Hénon maps:

xt+1
sid = fsxt

sidd − yt
sid + «fMt − fsxt

siddg, yt+1
sid = bxt

sid,

s12ad

Mt ; s1 − 2pdfsxt
s1dd + pfsxt

s2dd + pfsxt
s3dd, s12bd

where sxt
sid ,yt

sidd si =1, 2, 3d is a state vector of theith sub-
system at a discrete timet , fsxd=1−ax2, « is a coupling pa-
rameter,ps0øpø1/3d is a parameter tuning the degree of
asymmetry in the coupling from the unidirectionalsp=0d to
symmetric couplingsp=1/3d , Mt can be regarded as a
“weighted” mean field, andbsubu,1d is a damping param-
eter. As in the case of three coupled 1D maps, the three
coupled Hénon maps may also be used as a model system for
investigating the three-cluster dynamics in an ensemble of
globally coupled Hénon maps.

Here, we fix the values ofb anda at b=0.1 anda=1.83
and investigate the mechanism for the occurrence of partial
synchronization by varying the asymmetry parameterp. For
a sufficiently strong coupling, there exists a completely syn-
chronized attractorfxt

s1d=xt
s2d=xt

s3d ,yt
s1d=yt

s2d=yt
s3dg, indepen-

dently of p. When the coupling parameter« decreases and
passes a threshold value«*s=0.3574d, the completely syn-
chronized attractor becomes transversely unstable, because
its largest transverse Lyapunov exponent becomes positive.
Then, a new asynchronous two-cluster state, exhibiting on-
off intermittency, is born on an invariant subspace
hsxs1d ,ys1d ,xs2d ,ys2d ,xs3d ,ys3dd uxs2d=xs3d ,ys2d=ys3dj via a super-
critical blowout bifurcation. If this two-cluster is transversely
stable against the perturbation across the invariant subspace,
it becomes a partially synchronized attractor in the whole
phase space; otherwise, a completely desynchronized attrac-
tor, occupying a finite 6D volume, appears. The dynamics of
this two-cluster, satisfyingxt

s1d;Xt
s1d , yt

s1d;Yt
s1d , xt

s2d=xt
s3d

;Xt
s2d, and yt

s2d=yt
s3d;Yt

s2d, is governed by a reduced 4D
map,

Xt+1
s1d = fsXt

s1dd − Yt
s1d + 2p«ffsXt

s2dd − fsXt
s1ddg, s13ad

Yt+1
s1d = bXt

s1d, s13bd
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Xt+1
s2d = fsXt

s2dd − Yt
s2d + s1 − 2pd«ffsXt

s1dd − fsXt
s2ddg,

s13cd

Yt+1
s2d = bXt

s2d. s13dd

As in the coupled 1D maps, we introduce new coordinates
for the accuracy of numerical calculations,

Us1d =
Xs1d + Xs2d

2
, Us2d =

Ys1d + Ys2d

2
, s14ad

Vs1d =
Xs1d − Xs2d

2
, Vs2d =

Ys1d − Ys2d

2
. s14bd

Then, the coupled Hénon maps of Eq.s13d become

Ut+1
s1d = 1 −asUt

s1d2 + Vt
s1d2d + 2a«s4p − 1dUt

s1dVt
s1d − Ut

s2d,

s15ad

Ut+1
s2d = bUt

s1d, s15bd

Vt+1
s1d = 2as« − 1dUt

s1dVt
s1d − Vt

s2d, s15cd

Vt+1
s2d = bVt

s1d. s15dd

In this new map, we numerically follow a typical trajectory
in the intermittent two-cluster state until its lengthL becomes
108, and obtain its two transverse Lyapunov exponentss',1
ands',2søs',1d for the trajectory segment.

Figure 5sad shows the largest transverse Lyapunov expo-
nents',1 which depends on the the asymmetry parameterp
fp=0 sup trianglesd, 0.151 scrossesd, and 1/3 sdown tri-
anglesdg. Below a threshold valuep*s.0.151d, the two-
cluster is transversely stablesi.e., s',1,0d, while abovep* ,
it is transversely unstablesi.e., s',1.0d. Hence, for 0øp
,p* partial synchronization occurs through a supercritical
blowout bifurcation. On the other hand, complete desynchro-
nization takes place forp* ,pø1/3. As in the coupled 1D
maps, such a transverse stability of the two-cluster state may
be understood through a decomposition of the intermittent
two-cluster into its laminar and bursting components. We use
a threshold valued* s=10−4d for the transverse variabled
f; 1

2suVs1du+ uVs2dudg, representing the deviation from the in-
variant synchronization plane. Whend,d* , the system is in
the laminarsoffd state, while fordùd* it is in the bursting
sond state. As in Sec. II A, the sign of the largest transverse
Lyapunov exponents',1 of the two-cluster state is deter-
mined through the competition between its laminar and
bursting componentsfsee Eq.s9bdg. Figures 5sbd and 5scd
show the strength of the laminar and bursting components
si.e., uS',1

l u and S',1
b d, respectively. We note that asp in-

creases from zerofp=0 sup trianglesd, 0.151scrossesd, and
1/3 sdown trianglesdg, S',1

b increases, whileuS',1
l u is nearly

independent ofp. For 0øp,p*s.0.151d, the laminar com-
ponent is dominant becauseuS',1

l u.S',1
b , and hence a par-

tially synchronized attractor is born through the supercritical
blowout bifurcation. On the other hand, forp* ,pø1/3, a
completely desynchronized 6D attractor appears because the
bursting component becomes dominantsi.e., S',1

b . uS',1
l ud.

As examples for«=0.34, see Figs. 5sdd, 5sed, 5sfd, and 5sgd
which show the partially synchronized attractor and the com-
pletely desynchronized attractor forp=0 and 1/3, respec-
tively.

As a second example, we consider a system of three
coupled parametrically forced pendula:

ẋi = yi + «fMx − xig, ẏi = fsxi,yi,td + «fMy − yig,

s16ad

Mx ; s1 − 2pdx1 + px2 + px3, My ; s1 − 2pdy1 + py2 + py3,

s16bd

wheresxi,yid si =1,2,3d is a state vector of theith pendulum,
fsx,y,td=−2pbVy−2psV2−A cos 2ptdsin 2px, x is a nor-
malized angle with rangexP f0,1d , y is a normalized angu-
lar velocity, the overdot denotes a derivative with respect to
time t , b is a normalized damping parameter,V is a normal-

FIG. 5. Consequence of the supercritical blowout bifurcation of
the completely synchronized attractor in three coupled Hénon maps
for b=0.1 anda=1.83.sad Plot of the largest transverse Lyapunov
exponents',1 versusD«f«−«*s=0.3574dg for p=0 sup trianglesd,
0.151scrossesd, and 1/3sdown trianglesd. sbd fscdg Plot of the trans-
verse strength of the laminarsburstingd component fi.e.,
uS',1

l usS',1
b dg versusD«. The symbols are the same as those insad,

and the threshold value for the laminar state isd* =10−4. Straight
lines between the data symbols are plotted only to guide the eye.
Projections of the partially synchronized attractor onto thesdd xs1d

-xs2d and sed xs2d-xs3d planes for «=0.34 in the unidirectionally
coupled case withp=0. Projections of the completely desynchro-
nized attractor onto thesfd xs1d-xs2d and sgd xs2d-xs3d planes for«
=0.34 in the symmetrically coupled case withp=1/3.
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ized natural frequency of the unforced pendulum,A is a nor-
malized driving amplitude of the vertical oscillation of the
suspension point,« is a coupling parameter, andp s0øp
ø1/3d is a parameter tuning the degree of the asymmetry in
the coupling. The two extreme cases of coupling correspond
to the unidirectionalsp=0d and symmetricsp=1/3d cou-
plings, andsMx,Myd is a “weighted” mean field. As in the
three coupled 1D maps, these three coupled pendula may
also be used as a model for studying the three-cluster dynam-
ics in an ensemble of globally coupled pendula.

We fix the values ofb , V, andA at b=1.0, V=0.5, and
A=0.85, and investigate the dependence of the occurrence of
partial synchronization on the asymmetry parameterp. When
the coupling parameter« decreases and passes a threshold
value «*s=0.648d, the completely synchronized attractor be-
comes transversely unstable, independently ofp. Then, an
asynchronous two-cluster, exhibiting on-off intermittency,
appears on an invariant subspace via a supercritical blowout
bifurcation. If the two-cluster is transversely stablesun-
stabled, partial synchronizationscomplete desynchronizationd
occurs. This two-cluster satisfiesx1std;X1std , y1std
;Y1std , x2std=x3std;X2std, and y2std=y3std;Y2std, and its
dynamics is governed by a system of four coupled ordinary
differential equations,

Ẋ1 = Y1 + 2p«fX2 − X1g, s17ad

Ẏ1 = fsX1,Y1,td + 2p«fY2 − Y1g, s17bd

Ẋ2 = Y2 + s1 − 2pd«fX1 − X2g, s17cd

Ẏ2 = fsX2,Y2,td + s1 − 2pd«fY1 − Y2g. s17dd

As in the coupled Hénon maps, we introduce new coordi-
nates for the accuracy of numerical calculations,

U1 =
X1 + X2

2
, U2 =

Y1 + Y2

2
, s18ad

V1 =
X1 − X2

2
, V2 =

Y1 − Y2

2
. s18bd

Then, the equations of motion of Eq.s17d become

U̇1 = U2 + s1 − 4pd«V1, s19ad

U̇2 = − 2pbVU2 − 2psV2 − A cos 2ptdsin 2pU1cos 2pV1

+ s1 − 4pd«V2, s19bd

V̇1 = V2 − «V1, s19cd

V̇2 = − s2pbV + «dV2 − 2psV2 − A cos 2ptd

3cos 2pU1sin 2pV1. s19dd

By stroboscopically sampling the orbit points
fU1smd ,U2smd ,V1smd ,V2smdg at the discrete timem, we ob-
tain the 4D Poincaré mapP.

As in the coupled Hénon maps, we follow a trajectory in
the intermittent two-cluster until its lengthL becomes 108,
and obtain its transverse Lyapunov exponents. As shown in
Fig. 6sad, the largest transverse Lyapunov exponents',1 de-
pends onp fp=0 sup trianglesd, 0.17 scrossesd, and 1/3
sdown trianglesdg. For p,p*s.0.17d, the two-cluster is
transversely stable withs',1,0, while for p.p* , it is trans-
versely unstable withs',1.0. Like the cases of the coupled
1D and Hénon maps, this transverse stability of the intermit-
tent two-cluster statesi.e., the sign ofs',1d may be deter-
mined via competition between its laminar and bursting
components. The weighted transverse Lyapunov exponents
of the laminar and bursting componentsuS',1

l u andS',1
b are

shown in Figs. 6sbd and 6scd, respectively. Asp is increased
from zerofp=0 sup trianglesd, 0.17scrossesd, and 1/3sdown
trianglesdg, the strength of the bursting componentsi.e.,S',1

b d
increases, while the strength of the laminar componentsi.e.,
uS',1

l ud is nearly independent ofp. For the threshold value

FIG. 6. Consequence of the supercritical blowout bifurcation of
the completely synchronized attractor in three coupled pendula for
b=1.0, V=0.5 and A=0.85. sad Plot of the largest transverse
Lyapunov exponents',1 versusD«f«−«*s=0.648dg for p=0 sup
trianglesd, 0.151scrossesd, and 1/3sdown trianglesd. sbd fscdg Plot
of the transverse strength of the laminarsburstingd componentfi.e.,
uS',1

l usS',1
b dg versusD«. The symbols are the same as those insad,

and the threshold value for the laminar state isd* =10−4. Straight
lines between the data symbols are plotted only to guide the eye.
Projections of the partially synchronized attractor onto thesdd x1

-x2 and sed x2-x3 planes for«=0.63 in the unidirectionally coupled
case withp=0. Projections of the completely desynchronized at-
tractor onto thesfd x1-x2 and sgd x2-x3 planes for«=0.63 in the
symmetrically coupled case withp=1/3.
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p*s.0.17d, the strengths of laminar and bursting components
become balanced. Thus, for 0øp,p* , the two-cluster is
transversely stable because the laminar component is domi-
nant, and hence a partially synchronized attractor is created
via the supercritical blowout bifurcationfe.g., see Figs. 6sdd
and 6sed for p=0 and«=0.63g. On the other hand, since the
bursting component is dominant forp* ,pø1/3, the two-
cluster is transversely unstable, and hence a completely de-
synchronized attractor appearsfe.g., see Figs. 6sfd and 6sgd
for p=1/3 and«=0.63g.

III. SUMMARY

We have investigated the dynamical origin for the appear-
ance of a partially synchronized attractor via a blowout bi-
furcation of the fully synchronized attractor in three coupled
1D snoninvertibled maps. An asynchronous two-cluster state

appears on an invariant plane through the supercritical blow-
out bifurcation, and it exhibits on-off intermittency. It has
been found that the transverse stability of the intermittent
two-cluster state may be determined via competition between
its laminar and bursting components. If the laminar compo-
nent is dominant, then partial synchronization occurs on the
invariant plane; otherwise complete desynchronization takes
place. These results are also confirmed in three coupled
Hénon maps and three coupled pendula which are multidi-
mensional invertible period-doubling systems. Hence, the
mechanism for the occurrence of partial synchronization
seems to be “universal,” in the sense that it holds in typical
three-coupled period-doubling systems.
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f30g The weighted transverse Lyapunov exponentsS'
l and S'

b of

W. LIM AND S.-Y. KIM PHYSICAL REVIEW E 71, 036221s2005d

036221-8



the laminar and bursting components depend on the threshold
valued* for the laminar state, while the transverse Lyapunov
exponents' of the two-cluster state is independent ofd* . As
d* is decreased,S'

l decreases to zero because the fractionml

of the time spent in the laminar state goes to zero; thusS'
b

f=s'+ uS'
l ug converges tos'. However, we note thats' de-

pends only on the difference betweenS'
b and uS'

l u, which is
independent ofd* fsee Eq.s9bdg. Hence, althoughS

'

lsbd de-
pends ond* , the conclusion as to the transverse stability of the
the two-cluster state is independent ofd* .
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