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Mechanism for the partial synchronization in three coupled chaotic systems
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We investigate the dynamical mechanism for the partial synchronization in three coupled one-dimensional
maps. A completely synchronized attractor on the diagonal becomes transversely unstable via a blowout
bifurcation, and then a two-cluster state, exhibiting on-off intermittency, appears on an invariant plane. If the
newly created two-cluster state is transversely stable, then partial synchronization occurs on the invariant
plane; otherwise, complete desynchronization takes place. It is found that the transverse stability of the inter-
mittent two-cluster state may be determined through the competition between its laminar and bursting com-
ponents. When the lamin&bursting component is dominant, partial synchronizaticomplete desynchroni-
zation occurs through the blowout bifurcation. This mechanism for the occurrence of partial synchronization
is also confirmed in three coupled multidimensional invertible systems, such as coupled Hénon maps and
coupled pendula.
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I. INTRODUCTION cur, respectively. In Sec. Il A, we investigate the dynamical
mechanism for the occurrence of partial synchronization by
Recently, synchronization of coupled chaotic systems hagcreasing the parameterfrom 0 to 1/3. An asynchronous
a.ttra.cted mUCh a.ttention because Of ItS pOtential praCtical aﬂwo_(ﬂuster state appears on an invariant p|ane via a Super-
plications(e.g., see Refl1]). For a sufficiently strong cou- critical blowout bifurcation of the fully synchronized attrac-
pling, complete synchronization of chaotic systems occurgor on the diagonal. A typical trajectory in the newly created
(i.e., all subsystems become synchronjze2+5]. However,  wo-cluster state exhibits on-off intermittench20-28,
as the coupling parameter decreases and passes a threshglgkre long episodes of lamindi.e., nearly synchronous
value, the fully synchronized attractor on the invariant syn-eyolution near the diagonal are occasionally interrupted by
chronization subspace becomes transversely unstable Viasport-term bursts. When the asymmetry parampter less
blowout bifurcation[6—10]. Then, partial synchronization, than a threshold valug® (i.e., 0<p<p’), the two-cluster
where some of the subsystems synchronize while others dgate on the invariant plane is transversely stable, and hence
nOt, or Complete desynchronization may occur for three Obartia| Synchronization oCcurs. However, fpp p* a com-
more coupled systenj41-18. In particular, partial synchro- pietely desynchronized attractor, occupying a three-
nization (OI‘ Clustering has been eXtenSiVely inVeStigated in dimensiona|(3D) finite V0|ume’ appears, because the two-
globally coupled systems where each subsystem is couplegjuster state is transversely unstable. It is found that such a
to all the other subsystems with equal strendt?-19. transverse stability of the intermittent two-cluster state may
Here, we are interested in whether the asynchronous age determined via competition between its laminar and burst-
tractor created via a Supercritical blowout bifurcation of the|ng Components_ When the “transverse Strength” Of the |ami_
fully synchronized attractor is partially synchronized or com-npar component is largeismalley than that of the bursting
pletely desynchronized. Examples of both partially synchrozomponent, the two-cluster state becomes transversely stable
nized attractorg11,13—-13 and completely desynchronized (unstablg, and hence a partially synchronizécompletely
attractord 12,16 were reported. These previous results showgesynchronizedattractor appears through the supercritical
that occurrence of partial synchronization depends on thgjowout bifurcation. These results are also confirmed in Sec.
type of base map constituting the coupled system and thg B for the case of three coupled multidimensional invertible
type of coupling between the base maps. However, the Umseriod-doubling systems such as coupled Hénon maps and
derlying mechanism for the occurrence of partial synchronicoupled pendula. Hence, the mechanism for the occurrence
zation remains unclear. of partial synchronization seems to be of wide significance
This paper is organized as follows. As a simple modelpecause it holds in typical three-coupled period-doubling
where partial synchronization may occur, we consider thregystems. However, note that the transverse stability of a two-
coupled one-dimensiondllD) maps with a parametgs(0  cluster state for the three-coupled case does not imply trans-
<p=1/3) tuning the degree of asymmetry in the coupling verse stability in the\ globally coupled case. As was shown
from unidirectional coupling(p=0) to symmetric coupling in [18], chaotic two-cluster states created via blowout bifur-
(p=1/3). This model can be used to represent the threeeations are transversely unstable in an ensembl gfo-
cluster dynamics in an ensemble Mfglobally coupled 1D bally coupled 1D maps(A detailed explanation of distinc-
maps and the parametprdescribes the distribution of the tion between the two types of transverse stability for the
elements between the three clusters. For both extreme castsee-coupled andll globally coupled cases is also given in
of the unidirectional and symmetric couplings, partial syn-the last part of Sec. Il A.Finally, we give a summary in Sec.
chronization[11] and complete desynchronizatip@6] oc-  |llI.
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IIl. DYNAMICAL MECHANISM FOR THE OCCURRENCE 1.2 T T 12 T T
OF PARTIAL SYNCHRONIZATION @ ®
A. Partial synchronization in three coupled 1D maps & &5
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We investigate the dynamical mechanism for the occur-
rence of partial synchronization in three coupled 1D maps
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wherexﬁI> is a state variable of theh element at a discrete
timet, the uncoupled dynamidg=0) is governed by the 1D [
mapf(x)=1-ax? with a control paramete, ¢ is a coupling 002 @ !

parameter, angb; denotes the coupling weight for thgh 0.43 0.44 0.45

eIement(Elepj =1). Here, the asymmetric coupling naturally €

appears when studying the three-cluster dynamics in an en- FiG. 1. Projections of a fully synchronized attractor onto (e

semble ofN globally coupled 1D mapgl7-19, where each  xM.x@ and (b) x?-x® planes fora=1.95 ands=0.5. (c) Plot of

1D map is coupled to all the other ones with equal strengthg, (transverse Lyapunov exponent of the fully synchronized attrac-
tor) versuse for a=1.95. The data ofr, are represented by a solid
line.
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For the case of three clusters witl) elements in eacljth
cluster(j=1,2,3, Eq.(2) is reduced to the three-coupled sys-

tem of Eq.(1), where P (EN/N) represents the fraction of Lyapunov exponent of the 1D map For a=1.95, we have
:he total popul?t{ﬁn of %I.emcints Iln théah cIustert. .TWO exl—. 0,=0.5795, and hence the attractor is a chaotic one. On the
reme cases ot Ihe unidirectional and Symmetric Couplinggy, o hang, the transverse stability of the fully synchronized
were previously considered. The unidirectionally COUpledattractor against perturbation across the diagéinal, asyn-

ma? with F:ﬁ:tﬁfot('t'e" pl_:éi,él\gvhe;e the tErSt drive dSUb'd chronous perturbationis determined by its transverse
system wi € state varna acts on the second an Lyapunov exponent with a twofold multiplicity,

third response subsystems with the state variak@sand
x®, was studied in[11], and partial synchronization was
observed to occur on an invariant plane via a supercritical
blowout bifurcation of the fully synchronized attractor on the A plot of o, versuse is shown in Fig. 1c). If ¢ is relatively
diagonal. On the other hand, a completely desynchronizetarge such thaty <-In|1-g|, then the transverse Lyapunov
3D attractor appears through the supercritical blowout bifurexponento, is negative, and hence the fully synchronized
cation for the case of symmetric coupling with=p,=p;  attractor becomes transversely stable. Howeverg ade-
=1/3[16]. To connect these two extreme cases, we considarreases and passes a threshold valug=0.4398, the fully
a path withp,=ps=p(0=<p=<1/3) in the p,—p; plane, and synchronized attractor becomes transversely unstable, be-
then the parametgp tunes the degree of asymmetry in the cause the transverse Lyapunov exponentbecomes posi-
coupling of Eqg.(1) from the unidirectional couplingp=0) tive. Then, an asynchronous attractor, containing the diago-
to the symmetric couplingp=1/3). nal, is created via a supercritical blowout bifurcation, but its
From now on, we investigate the dynamical origin for thetype depends on the value pf
occurrence of partial synchronization by varying the asym- In the unidirectionally coupled case wifh=0, a partially
metry parametep in the three coupled 1D maps of Eq)  Synchronized attractor appears via a supercritical blowout bi-
for a=1.95. We first consider complete synchronization oc-furcation on the invarianflf ={(x'?,x?,x3) |x@=x31]
curring in the case of strong coupling. Such complete synplane, as shown in Figs(&@ and 2b) for £=0.42. The par-
chronization is independent pf Figures 1a) and Xb) show tially synchronized attractor is a chaotic one with two longi-
a fully synchronized attractor on the invariant diagonal fortudinal Lyapunov exponentso;; (=0.5795 and o,
£=0.5. The longitudinal stability of a synchronized trajectory (=-0.014], and it is transversely stable against the perturba-

ba(=1=x=x

where the prime represents the differentiationf afith re-
spect tox. This longitudinal Lyapunov exponent is just the

o, =0 +In1-¢gl. (4)

xt3))} on the attractor against the perturbationtion across thdl,; plane, because its transverse Lyapunov
along the diagonal is determined by its longitudinal exponento; (=-0.019 is negative. On the other hand, for
Lyapunov exponent the symmetrically coupled case wih=1/3, acompletely
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FIG. 2. Projections of the partially synchronized attractor onto G, 3. (g) Transversely stablér, =—0.0027 two-cluster state
the(a) X(l.)'X(Z) and(b) x@-x® planes fo=1.95 and:=0.42inthe  for p=0 and (b) transversely unstabler, =0.002 two-cluster for
unidirectionally coupled case witp=0. Projections of the com- p=1/3 in theU-V plane whena=1.95 andA&[=e—-¢"(=0.4398]

plestely desynchronized attractor onto tfw x-x2 and (d) x?  =_0.003.(c) Plot of -, (transverse Lyapunov exponent of the two-
X3 planes fora=1.95 ande=0.42 in the symmetrically coupled cjyster state versusAe for a=1.95 [p=0 (up triangley, 0.146
case withp=1/3. (crossep 1.3 (down triangleg]. Straight lines between the data

symbols are plotted only to guide the eye.
desynchronized attractor, occupying a finite 3D volume, ap-

pears through a supercritical blowout bifurcation, as showRractors in the reduced 2D mdpe., they are chaotic attrac-
in Figs. 4c) and 2d) for £=0.42, and it is a hyperchaotic tors in the restrictedl,; plane. However, their transverse
attractor with three positive Lyapunov exponents;  stability against perturbation across the invariBibt plane
=0.539,0,=0.021, ando3=0.01. Such complete desyn- depends on the value pf Only when the two-cluster state is
chronization occurs because the two-cluster state ohIthe transversely stable, it becomes an attractor in the whole 3D
plane, created via the supercritical blowout bifurcation, bespace. To determine the transverse stability of a two-cluster
comes transversely unstable, as will be shown below. state, we numerically follow a typical trajectory in the two-
When the fully synchronized attractor on the diagonal becjuster state until its lengtih. becomes 1%) and then the

comes transversely unstable, a two-cluster state appears @@nsverse Lyapunov exponent for the trajectory segment
the invariantil,3 plane through a supercritical blowout bifur- \ith lengthL is given by

cation. This two-cluster state satisfigs'=X; andx?=x"

=Y,, and its dynamics is governed by a reduced 2D map, =
Xerg = (X)) + 2pe[F(Yy) = FOX)], (58) o= 2 (1 =e)f (U= V. (8
t=0
Yern = F(YD) + (1 = 2p)e[F(X) = f(Yp]. (5b)

_ _ _ A plot of o, versusAe (=s—¢") is given in Fig. 3c) [p=0
For the accuracy of numerical calculatiof9], we intro- (up triangle$, 0.146 (crossel and 1/3(down triangled),
duce new coordinateld andV, where £"(=0.4398 is the blowout bifurcation point of the
X+Y X-Y fully synchronized attractor. For the case of unidirectional
= 5 = IR (6) coupling (p=0), the two-cluster state is transversely stable,
because its transverse Lyapunov exponentis negative,
Then the invariant diagonal is transformed into a new invari-and hence partial synchronization occurs on Ihg plane
ant lineV=0. In these new coordinates, the 2D reduced maia a supercritical blowout bifurcatiofi.e., a partially syn-
of Eq. (5) becomes chronized attractor appears on thg; plang. On the other
_ 2\ hand, asp is increased from 0, the value of, increases;
Up=1-a(Up+ Vi)~ 2as(1 - 4p)Ui\, (79 eventuaﬁr))/ it becomes zero for a thresﬁold valpé
_ B (=0.146, and then it becomes positive. Hence, for<p
Vi=2a(e = DUMV:. 7 _ 1/3, complete desynchronization takes place through a su-
Figures 3a) and 3b) show the two-cluster states, created viapercritical blowout bifurcatiorti.e., a completely desynchro-
supercritical blowout bifurcations, in thd-V plane for the nized 3D attractor appearsecause the two-cluster on the
unidirectionally (p=0) and symmetricallp=1/3) coupled Il,3 plane becomes transversely unstable. Examples in Figs.
cases, respectively. These two-cluster states are chaotic &@) and 3b) for Ae=-0.003 show the transversely stable
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(0, =-0.0027 and unstabldo, =0.002 two-cluster states R e — 08
for p=0 and 1/3, respectively.
We now investigate the mechanism for the transition from

) oo I Fo7| - =03} .
partial synchronization to complete desynchronization by
varying the asymmetry parametpr A typical trajectory in
the two-cluster state, born via a supercritical blowout bifur- 0.4 PR B 0.0 -
cation, exhibits on-off intermittency near the main diagonal. -0.0030 -0.0015  0.0000 -0.0030 -0.0015  0.0000
We use a small quantitg” for the threshold value of the As Az

magnitude of the transverse varialalé=|V|) such that ford 0.000 E——T— 0.062
<d’ the trajectory is considered to be in the lamiraff) .

state, where it exhibits a nearly synchronous motion, while
for d>d" it is considered in the burstin@n) state. Thus, a
typical trajectory may be decomposed into laminar and
bursting components. Then, dynamical properties of the two- -0.050 TR - 0.034 T
cluster state may be understood through competition of the -0.0030 -0.0015  0.0000 -0.0030 -0.0015  0.0000

~p'-0.025

\

“g" 0.048

laminar and bursting componenit40]. Here, we are con- ae ae
cerned about the transverse stability of an intermittent two- 0.026 T 0.026 T
cluster state. Its transverse Lyapunov exponenfsee Eq.
(8) for the transverse Lyapunov exponent of a trajectory seg- 3 o013 |- 1 <0013l i
meni can be given by the sum of the two weighted trans- —
verse LyaPunov exponents of the laminar and bursting com- '(c) ] '(f)
ponents ' and3P: 0000 2 1 . 0000 1 .
-0.0030 -0.0015  0.0000 -0.0030 -0.0015  0.0000
o, =3 +38 (9a) A 4e
b | FIG. 4. Plots of(a) [(d)] the fractionuy, of the laminar(burst-
=31 -[2L], (9b) ing) time, (b) [(e)] the transverse Lyapunov exponef{ o of the

éaminar(bursting component, andc) [(f)] the weighted transverse
Lyapunov exponent§'jb> of the laminar(bursting component ver-
sus Ag[=e-¢&"(=0.4399] for a=1.95 with p=0 (up triangles,
0.146(crossey and 1/3(down crosses Straight lines between the
data symbols are plotted only to guide the eye.

where the laminar component always has a negativ
weighted transverse Lyapunov exponéﬁtL <0). For each
componenfi=I,b), the weighted transverse Lyapunov expo-
nentEiL is given by the product of the fraction; of time
spent in the state and its transverse Lyapunov expongnt

e, irrespective of [see Figs. éa)—4(c)]. On the other hand, the
, ‘ L, transverse Lyapunov exponerﬁ of the bursting component
S =wo, mi= I increases ap is increased from zersee Fig. 4e); p=0 (up

triangleg, 0.146 (crossepy and 1/3(down triangleg], al-
. though its fractionuy[=1-p,] of the bursting time is nearly
UiL == 3 ’In|(1—s)f’(Ut—Vt)| (i=1b), (10) independent op, as showq in Fig. d@). Henc%, t_he trk;ems-
i tei state verse strength of the bursting compongire., %5 (=upo) )]
becomes larger ag is increased from zerpsee Fig. 4f)].

wherel; is the time spent in the state for a t_rajectory S€9- For p=0 (up triangle$, the laminar component is dominant,
ment of lengthL and the primed summation is performed in becausd2u|>2'j. Hence, the two-cluster becomes trans-

eachi st'qte. Then, the sign mfi_ may be determlned through versely stable, and it becomes an attractor in the whole 3D
competition between th? laminar and burst,!ng Componentﬁhase spacé.e., partial synchronization occyrdHowever,
[see Eq(9b)_]. When the transverse streng_th of the laminar as p is increased from zeroEtj increases, Wh”dzlﬂ is
componentfi.e., the magnitude of the weighted transversenearly independent qf. Eventually, for a threshold valug
Lyapunov exponerifX',|)] is larger(smaliej than that of the [=0.146 (crosse¥, the transverse strength of the bursting
bursting componen.e., 3"), partial synchronizatioficom- and laminar components becomes balanged, 3° =3 |),
plete desynchronizatigroccurs, because the two-cluster be- 514 then the bursting component becomes do?ninaﬁp*for
comes transversely stablenstabl¢. _ <p=1/3[e.g., see the case @=1/3 (down triangley],

Figures 4a)—4(f) show the fraction, of the laminar  pecayses® >[5! |. Thus, when passing the threshold value
(bursting time [i.e., the time spent in the lamindbursting  p* 3 transition from partial synchronization to complete de-
statd, the transverse Lyapunov exponexli(f)) of the laminar  synchronization occurs. Consequently, fos p<p’, there
(bursting component, and the weighted transverse Lyapunoexists a partially synchronized attractor with <0 on the
exponents'” of the laminar(bursting component when the invariantI1,; plane[e.g., see Figs. (@ and 2b) for p=0],
threshold value for the laminar stateds=10"[30]. For the  while for p' <p=<1/3, a completely desynchronized 3D at-
case of the laminar component, bqth and (r'L are nearly tractor appearge.g., see Figs.(2) and 4d) for p=1/3] be-
independent ofp, and hence its weighted transversecause the two-cluster on tHd,; plane is transversely un-
Lyapunov exponenEL(=M|o'l) becomes nearly the same, stable.
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The above transition from a partially synchronized to anent corresponding te, ; in Eq. (11), because there exists
completely desynchronized attractor could be understood asnly one elemenxil) in the first clustell. Thus, in our three-
follows. The newly created intermittent two-cluster on thecoupled case partial synchronizati@mplete desynchroni-
invariantIl,; plane includes an infinite number of asynchro- zation is found to occur via a blowout bifurcation when the
nous unstable periodic orbits that are off the invariant diagiaminar (bursting component is dominant. Finally, we em-
onal. Some of these unstable periodic orbits are transversephasize that our method to determine the transverse stability
stable, while some others are transversely unstable. It is cof an intermittent two-cluster state through its decomposition
jectured that ap is increased from zero, the strength of theinto the laminar and bursting components may be applied to
group of asynchronous unstable periodic orbits with positivea large class of coupled systefscluding the three-coupled
transverse Lyapunov exponents might increase, which magnd globally coupled cases we consjder
result in the observed increasea'ﬂ. ) S o _

To sum up the main results of this section, we consider anB- Partial synchronlz:?\tlon in three-coupled multidimensional
intermittent two-cluster state created via a blowout bifurca- invertible systems
tion in the three-coupled 1D maps of Ed) and show that The results obtained in the preceding section are of wide
the sign of its transverse Lyapunov exponentof Eq. (8)  significance, because the 1D map is a representative model
can be determined through competition between the lamingor a large class of period-doubling systems. As examples,
and bursting components. However, we note that the transwe study coupled multidimensional invertible systems, ex-
verse stability of a two-cluster state in the three-coupled 1Dhibiting period doublings, and find similar results.
maps does not imply its transverse stability in an ensemble First, we consider three coupled Hénon maps:
of N globally coupled 1D maps of Ed2). In fact, it was

shown in[18] that two-cluster states created via blowout X =104 =y + e[M= ()], yiti=bx,
bifurcations in theN globally coupled 1D maps are trans- (129
versely unstable for all the cases of distributions of elements

between the two clusters. To make the point clear, we con- M, = (1 - 2p)F(xV) + pf(x?) + pf(x®),  (12b)
sider a two-cluster state(x§1>:~--:xiNl)EXt,ﬁNlﬂ):---

M 0y (= i : i
= <N)EYI) with N; elements in théth cluster(i=1, 2). Then, Wh?re(xlt’ytd? (i _;L’ t2m3 f'S a_iti\tezveqor of th‘:‘tlh sub

there exist two transverse Lyapunov exponents determinin§yS etm a g<|sc<ri/es me (x)= atx ts ISa ctcr;updlng pa- ¢
the transverse stability of the two-cluster state ameter,p(0<p<1/3) is a parameter tuning the degree o

asymmetry in the coupling from the unidirectior{a=0) to

1 , symmetric coupling(p=1/3), M, can be regarded as a
UL,l:JmEZ In[(1 - &)f" (X, “weighted” mean field, and(|b|<1) is a damping param-
=0 eter. As in the case of three coupled 1D maps, the three
L1 coupled Hénon maps may also be used as a model system for
_e 1 , investigating the three-cluster dynamics in an ensemble of
o= !mLtZEO In[(1 - &)f"(Yy]. (1) globally coupled Hénon maps.

Here, we fix the values df anda at b=0.1 anda=1.83
Here,o, ; ando, , with N;-1 andN,—1 multiplicities de-  and investigate the mechanism for the occurrence of partial
termine the stability against perturbations destroying the synsynchronization by varying the asymmetry parameteffor
chronization of the first and second clusters, respectively. Ag sufficiently strong coupling, there exists a completely syn-
shown in Fig. 6 of Ref[18], the first largest transverse chronized attractofx\”=x?=x®,y»=y?=y!3], indepen-
Lyapunov exponendr, , is positive for all values of the dis-  gently of p. When the coupling parameterdecreases and
tribution parameterg (=N,/N), and hence all two-cluster passes a threshold valud(=0.3574, the completely syn-
stateg(created via blowout bifurcationpecome transversely chronized attractor becomes transversely unstable, because
unstable. Following the similar procedure developed in thts |argest transverse Lyapunov exponent becomes positive.
above three-coupled cafgee Eq(9b)], the transverse insta- Then, a new asynchronous two-cluster state, exhibiting on-
bility of all two-cluster states is also determined throughoff intermittency, is born on an invariant subspace
competition between their laminar and bursting COMPONeNts;(x( y( x y@ x3) y3)|x2=x3 y2=y®} via a super-
Since its bursting component is dominant for@liany two-  cjtical blowout bifurcation. If this two-cluster is transversely
cluster statécreated through a blowout bifurcatiobecomes  giap|e against the perturbation across the invariant subspace,
transversely unstable for ti¢globally coupled case. Thisis i hecomes a partially synchronized attractor in the whole

in contrast to our three-coupled case, where only one tra“%‘hase space; otherwise, a completely desynchronized attrac-

verse Lyapunov exponent, of Eq.(8) deter(rl‘r)ﬁnes tg? tr%Ts- tor, occupying a finite 6D volume, appears. The dynamics of
verse stability of the two-cluster state™ =X, %~ =X this two-cluster, satisfyingxil)zxil), yil)EYil), xiZ):xf)

=Y,) on thell,; plane. We note that the transverse Lyapunov_ Xiz) and y(z):y(3)EY(2) is governed by a reduced 4D
exponent o,, determining stability against perturbation map’ vt v
breaking the synchrony of the second clugte? =x), cor-

1) = Dy _ v@ 2y _ (1)
responds to the second transverse Lyapunov expanept X1 = FOG7) =Y+ 2pe[F(X7) - F(X )], (133
in Eq. (11) for theN globally coupled cas¢However, for the i "
three-coupled case, there is no transverse Lyapunov expo- Yt+1:bxf s (13b)
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X@= 1) = Y2 + (1 - 2p)el F(X) - (X)), T T @)
(130 o 0000 D S
Ygf)l = b)(iz). (130) -0.002 | | _
As in the coupled 1D maps, we introduce new coordinates -0.0030 '°~°§;5 0.0000
for the accuracy of numerical calculations,
0.015 —— 0.015 —
D) 4 x@ D 4y ] ]
u® = u u®@= u (149 — o010 | 4 ~oo010 -
2 -\.w—f L ] QNH L 4
— 0.005 |- - 0.005 |- -
v = —X(l) - X (2) — _Y(l) -Y®@ (14b) 0.000 (&, AN 0.000 (@,
- 2 3 - 2 -0.0030 -0.0015 0.0000 -0.0030 -0.0015 0.0000
Then, the coupled Hénon maps of Ef3) become 2
U, = 1 -aU®? + V%) + 2a(4p - DUV - U@, 4 B2 -
(153 08
1.2 - 12
U2 =bu, (15h) s
Vi) = 2a(e - YUY - Vi@ (150 1 g 02 -
2) — 1 . . .
V§+)1 - b\/§ . (159 -0.8 0.2 12 o8 12

In this new map, we numerically follow a typical trajectory x

in the intermittent two-cluster state until its lendtbbecomes

108, and obtain its two transverse Lyapunov exponents FIG. 5. Consequence of the supercritical blowout bifurcation of

the completely synchronized attractor in three coupled Hénon maps

and f7¢,2($0¢,1) for the trajectory segment. for b=0.1 anda=1.83.(a) Plot of the largest transverse Lyapunov
Figure 5a) shows the largest transverse Lyapunov expo—exponemgL | versusAe[s—s" (=0.3574] for p=0 (up triangles,

nento, ; which depends on the the asymmetry parampter g 151 (crossey and 1/3(down triangles (b) [(c)] Plot of the trans-
[p=0 (up triangley, 0.151 (crosse)s*and 1/3(down tri-  yerse strength of the laminarbursting component [ie.,
angleg]. Below a threshold valug'(=0.15D, the two- |s| i(sb )] versusAe. The symbols are the same as thoséain
cluster is transversely stablee., o, 1<0), while abovep’,  andthe threshold value for the laminar statefis 10%. Straight

it is transversely unstablé.e., o, ;>0). Hence, for G<p lines between the data symbols are plotted only to guide the eye.
<p' partial synchronization occurs through a supercriticalProjections of the partially synchronized attractor onto (tjex®
blowout bifurcation. On the other hand, complete desynchro-x? and (e) x?-x® planes fore=0.34 in the unidirectionally
nization takes place fop" <p=1/3. As in the coupled 1D coupled case wittp=0. Projections of the completely desynchro-
maps, such a transverse stability of the two-cluster state mayized attractor onto théf) xM-x? and (g) x?-x® planes fore

be understood through a decomposition of the intermittent0.34 in the symmetrically coupled case wik 1/3.

two-cluster into its laminar and bursting components. We use

a threshold valued” (=10°%) for the transverse variabld  As examples for=0.34, see Figs.(8), 5(¢), 5(f), and 5g)
[E%(|V(1)|+\V(2)|)], representing the deviation from the in- which show the partially synchronized attractor and the com-
variant synchronization plane. Wher<d’, the system is in  pletely desynchronized attractor fp=0 and 1/3, respec-
the laminar(off) state, while ford=d" it is in the bursting tively.

(on) state. As in Sec. Il A, the sign of the largest transverse As a second example, we consider a system of three
Lyapunov exponentr, ; of the two-cluster state is deter- coupled parametrically forced pendula:

mined through the competition between its laminar and o -
bursting componentfsee Eq.(9b)]. Figures %b) and 5c) X =Yit+e[Mx=xl, yi= 10y, +e[My -yl

show the strength of the laminar and bursting components (163
(iLe., [2' o] and 3Y ), respectively. We note that gs in-

creases from zerfp=0 (up triangles, 0.151(crosses and M, = (1-2p)x; + PXo+ PXs, My = (1= 2p)y; + Py, + pys,

1/3 (down triangle¥], 37 ; increases, whiléX', | is nearly (16b)
independent op. For 0<p<p'(=0.151), the laminar com-

ponent is dominant becau$®' ;|>3" ,, and hence a par- where(xy;) (i=1,2,3 is a state vector of théh pendulum,
tially synchronized attractor is born through the supercriticalf(x,y,t) =—27BQy - 2m(Q2- A cos 2rt)sin 27X, X is a nor-
blowout bifurcation. On the other hand, fpi <p<1/3, a  malized angle with rangee [0,1), y is a normalized angu-
completely desynchronized 6D attractor appears because ther velocity, the overdot denotes a derivative with respect to
bursting component becomes dominging., 23,1>|2L1|)- timet, Bis a normalized damping paramet€r,s a normal-
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ized natural frequency of the unforced penduluiis a nor-
malized driving amplitude of the vertical oscillation of the
suspension pointg is a coupling parameter, ang (0<p

< 1/3) is a parameter tuning the degree of the asymmetry in
the coupling. The two extreme cases of coupling correspond

to the unidirectional(p=0) and symmetric(p=1/3) cou-

plings, and(M,,M,) is a “weighted” mean field. As in the

three coupled 1D maps, these three coupled pendula may
also be used as a model for studying the three-cluster dynam- —

ics in an ensemble of globally coupled pendula. W 005

We fix the values of3, (2, andA at 8=1.0,=0.5, and
A=0.85, and investigate the dependence of the occurrence of
partial synchronization on the asymmetry paramptéihen
the coupling parametes decreases and passes a threshold
value £"(=0.648, the completely synchronized attractor be-
comes transversely unstable, independentlyp.ofrhen, an
asynchronous two-cluster, exhibiting on-off intermittency,
appears on an invariant subspace via a supercritical blowout
bifurcation. If the two-cluster is transversely stalfen-
stablg, partial synchronizatioficomplete desynchronizatipn
occurs. This two-cluster satisfiesx;(t)=X;(t), yi(t)
=Y1(1), () =x3(t) = X5(t), and y,(t) =y5(t) =Y,(t), and its
dynamics is governed by a system of four coupled ordinary
differential equations,

PHYSICAL REVIEW E 71, 036221(2005
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FIG. 6. Consequence of the supercritical blowout bifurcation of

the completely synchronized attractor in three coupled pendula for

B=1.0,Q0=0.5 and A=0.85. (a) Plot of the largest transverse

Lyapunov exponentr, ; versusAe[e—g"(=0.648] for p=0 (up
triangles, 0.151(crossey and 1/3(down triangles (b) [(c)] Plot

of the transverse strength of the lamirfaursting componenti.e.,

X1 =Yy + 2pe[X, = X4], (173

Y1 = f(Xy, Yo, 1) + 2pe[ Yo - Y1, (17b)
X, =Y, + (1= 2p)e[X; = X5], (179

Y, = f(Xp, Y1) + (1 = 2p)e[ Y1 = Yal. (17d)

S, (=% )] versusAe. The symbols are the same as thoséain

) ) ] .and the threshold value for the laminar statedis 1074, Straight
As in the coupled Hénon maps, we introduce new coordijines petween the data symbols are plotted only to guide the eye.

nates for the accuracy of numerical calculations,

Projections of the partially synchronized attractor onto ftex;
-X, and (e) x,-x3 planes fore=0.63 in the unidirectionally coupled

X1+ X, Yi+Y, , L )
1=, Up,=———, (183 case withp=0. Projections of the completely desynchronized at-
2 2 tractor onto the(f) x;-X, and (g) xo-x3 planes fore=0.63 in the
symmetrically coupled case with=1/3.
X=X Yi-Y
Vi= S V=t (18b) . , . _
2 2 As in the coupled Hénon maps, we follow a trajectory in
. . the intermittent two-cluster until its length becomes 1%)
Then, the equations of motion of EL7) become and obtain its transverse Lyapunov exponents. As shown in
U1: U,+ (1 - 4p)eVy, (199 Fig. 6(a), the largest transverse Lyapunov exponent; de-

pends onp [p=0 (up triangle$, 0.17 (crosses and 1/3
. (down triangley]. For p<p'(=0.17), the two-cluster is

U, = - 27BQU, - 27(Q? — A cos 2rt)sin 27U,cos 27V,

transversely stable witlr, 1 <0, while forp>p’, it is trans-

+(1-4p)eVs, (19b)
Vy=V,— eV, (190
Vy= = (2mBQ + &)V, — 2mm(Q? - A cos 2rt)
X cos 2rU;sin 27V, (19d)
By stroboscopically sampling the orbit points

[U1(m),U,(m),V;(m),V,(m)] at the discrete timen, we ob-
tain the 4D Poincaré map.

versely unstable witlor, ;>0. Like the cases of the coupled
1D and Hénon maps, this transverse stability of the intermit-
tent two-cluster statéi.e., the sign ofo, ;) may be deter-
mined via competition between its laminar and bursting
components. The weighted transverse Lyapunov exponents
of the laminar and bursting componemELﬂ andEtL1 are
shown in Figs. &) and Gc), respectively. A9 is increased
from zero[p=0 (up triangle$, 0.17(crossep and 1/3(down
triangles], the strength of the bursting componéim.,EtLl)
increases, while the strength of the laminar compoitieat,
!, 1) is nearly independent gf. For the threshold value
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p'(=0.17), the strengths of laminar and bursting componentsappears on an invariant plane through the supercritical blow-
become balanced. Thus, for<p<p’, the two-cluster is out bifurcation, and it exhibits on-off intermittency. It has

transversely stable because the laminar component is dontdeen found that the transverse stability of the intermittent
nant, and hence a partially synchronized attractor is createivo-cluster state may be determined via competition between
via the supercritical blowout bifurcatide.g., see Figs.(6) its laminar and bursting components. If the laminar compo-
and Ge) for p=0 ande=0.63]. On the other hand, since the nent is dominant, then partial synchronization occurs on the
bursting component is dominant f@f <p=1/3, the two- invariant plane; otherwise complete desynchronization takes
cluster is transversely unstable, and hence a completely delace. These results are also confirmed in three coupled

synchronized attractor appedesg., see Figs.(6) and Gg)
for p=1/3 ande=0.63].

. SUMMARY

We have investigated the dynamical origin for the appear
ance of a partially synchronized attractor via a blowout bi-
furcation of the fully synchronized attractor in three coupled
1D (noninvertiblg maps. An asynchronous two-cluster state

Hénon maps and three coupled pendula which are multidi-
mensional invertible period-doubling systems. Hence, the
mechanism for the occurrence of partial synchronization
seems to be “universal,” in the sense that it holds in typical
three-coupled period-doubling systems.
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[=o, +|2'|] converges tar, . However, we note that, de-
pends only on the difference betweBA and |3 |, which is
independent ofd" [see Eq.(9b)]. Hence, althougfﬁljb) de-
pends ord’, the conclusion as to the transverse stability of the
the two-cluster state is independentdf



